
NO NONSENSE:

B Y L E O N B R O W N

PROGRAMMING
CONCEPTS

No Nonsense:
Programming Concepts

Copyright © 2018 Nextpoint Solutions Ltd.

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system or transmitted in any for or by any means, without the prior written

permission of the publisher, except in the case of brief quotations embedded in

critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the

accuracy of the information presented. However, the information contained in

this book is sold without warranty, either express or implied. Neither the

author, nor Nextpoint, its dealers and distributors will be held liable for any

damages caused or alleged to be caused directly or indirectly by this book.

Nextpoint has endeavoured to provide trademark information about all of the

companies and products mentioned in this book by the appropriate use of

capitals. However, Nextpoint cannot guarantee the accuracy of this information.

First published: April 2018

Nextpoint Solutions Ltd.

Bulloch House

10 Rumford Place

Liverpool

L3 9DG

1

Table of Contents

Software Development Introduction..4
1 Overview..4
.. 5

1.1 No Nonsense Principles..6
1.2 Focus on Immediate Requirements...6
1.3 Keep It Simple...7
1.4 Keep It Real...9
1.5 Don’t Repeat Yourself...10
1.6 Elegance Is Always Secondary to Functionality.............................12
1.7 Short Term Laziness Is Bad...12
1.8 Strategic Laziness Is Good..13

Programming...13
1.9 Programming With Code..14
1.10 Programming Languages...15
1.11 Language Variations...19
1.12 Choosing the Right Language...20
1.13 Future Programming...23
1.14 Programming Today..26
1.15 Later this Week..27

Types of Software..28
1.16 Hardware...29
1.17 Operating System...31
1.18 Applications...32

Formatting vs Programming...37
Conclusion...43
Exercise..44

2 2 .. 45
Input / Output Concepts...45

1 The Link...45
2 Analogue to Digital...46
3 Speech...49

3.1 Output: Spoken...49
3.2 Input: Listening..51

4 Data Storage and Access...64
5 Display..69
6 Conclusion...71
7 Exercises..71

Data... 72
1 Purpose..72
2 Primitive Data...73

2.1 Boolean: True/False..74
2.2 Numbers..75

2

2.3 Char...77
3 Advanced Data Types..78

3.1 Strings...79
3.2 Colours..79
3.3 Images..82
3.4 Animation...91
3.5 Audio...94

4 Detection of Advanced Data Types..98
5 Making Sense..99

5.1 Raw Data...99
5.2 Formatted Data...101
5.3 Structured Data...105

6 Compressed Data...118
6.1 Dictionary Compression..119
6.2 Maths Compression..122

7 Encryption...134
7.1 One Way Encryption..135
7.2 Two Way Encryption...138

8 Conclusion..140
9 Exercises..140

Processing.. 142
1 Concepts... 143

1.1 Abstraction...144
1.2 Condition...144
1.3 Data..144
1.4 Function...145
1.5 Loop...146
1.6 Object...147

2 Validation of input and output. XSS...149
2.1 Processing advantages for speech to text......................................149

3 Decompression..149
3.1 Data Dictionary...150

4 Encrypted Data...150
Testing... 152

1 Data validation...152
1.1 Automated testing..153

Being Agile... 156
Real Projects and Jobs..185

3

1
Software Development Introduction

Useful systems exist for one purpose; to provide output of interest to its users.

From simple web pages to complex computer games and decision systems, the

role of a software system is defined through how it treats information to provide

useful output. This chapter provides an introduction to the main concepts of

software systems that lead to delivery of output for the end user.

1 Overview

Software systems are made from components that consist of the following

processes:

Figure 1.1: Process of each component inside a software system.

4

Software Development Introduction

From the simplest systems to the most complicated, this model is consistent for

all software. All complexity emerges from simplicity – that is, software systems

become more complicated as the number of their components increase.

“All complexity emerges from simplicity – that

is, software systems become more complicated

as the number of their components increase.”

Control of complexity is an important consideration for good software design.

While the primary concern is to guarantee that the software produces the

intended output, increasing complexity creates the following problems:

• Increased testing requirements.

• More scope for faults to exist.

• Higher risk of faults being introduced during maintenance.

• Increased difficulty to add new functionality.

• More difficulty to change existing functionality.

• Higher hardware requirements.

Awareness of these problems allows for code to be proactively developed in

ways that reduce complexity and increase maintainability.

Figure 1.2: High complexity is made from individual units of
low complexity.

5

Software Development Introduction

1.1 No Nonsense Principles

Programming is as much an art as it is a science. Like film critics debate

whether “Star Wars: The Last Jedi” was worth watching, the same applies to

software code. There will always be multiple ways to describe software

functionality through code, with programmers developing their own

programming style and technique preferences; all being subject to opinion.

With so much choice for programmers to choose from to write code, it’s

important to remember that not all code is equal. Let’s look at principles that

will help you to create more good quality code, with none of the bad and less of

the ugly...

1.2 Focus on Immediate Requirements

Firstly, the most important concern for code is to make sure that whatever

functionality and output it delivers matches the requirements. While academic

courses and “elite” programmers often imply that elegant programming

techniques are the primary focus in software development, this alone will never

guarantee that the end result will match the project’s specifications.

The most important concern for code is to

make sure that the resulting functionality

matches the project’s requirements.

Secondly, the other part of this principle is the focus on what’s “immediately”

required. While all code results in new features appearing in the software, some

of these features are required more urgently than others. Focusing on

immediate requirements will allow you to get a functioning version of the

software into the hands of users more quickly so that their benefits can be

delivered sooner rather than later. A focus on immediate requirements also

allows more achievable deadlines to be negotiated and avoids time being wasted

on features that turn out not to be required.

It’s great to have high quality code using object oriented principles and the like,

but all this elegance becomes pointless if the code doesn’t do the job it’s

intended to do. Elegant code also requires more time to develop, increasing the

risk of incomplete or missing functionality when time is a factor. In this type of

6

Software Development Introduction

scenario, ugly “spaghetti” code that delivers the full specification criteria will

always be the better code, despite its lack of elegance.

1.3 Keep It Simple

Good communication gets the message across in a way that’s accurate and

easily understood; nothing more and nothing less. Let’s look at the two

components of this:

• Accuracy.
Must describe the correct information that’s intended to be

communicated.

• Easily understood.
Presenting the communication in a format that requires minimal

effort and vocabulary to make sense of the wording.

Effective communication allows the widest range of people to understand its

message with the minimum amount of effort. The more complexity that’s added

to the message, the less likely the message will be understood by recipients due

to limitations of their vocabulary and attention span.

Figure 1.3: Using language to demonstrate how advanced
vocabulary is understood by fewer people.

7

Software Development Introduction

Writing code is the same as communication; after all, it’s a communication of

rules for the computer to follow. While computers don’t make mistakes, people

who write their code do!

People are more likely to make mistakes in writing and understanding code

when dealing with higher levels of complexity. It’s in your best interest to make

sure that code is kept simple so that its current and future development avoids

inheriting new faults through misunderstandings of programmers.

Let’s look at some of the features of low complexity code:

• Easy to read.
Like with any form of communication, good code should be presented

in a way that is easy to understand. This allows yourself and other

programmers to analyse what’s happening when it comes to bug fixes

and adding future updates without the risk of introducing new faults

due to misinterpreting the meaning of the code.

• Short and sweet.
Shorter code is easier to manage compared to longwinded code,

especially where the entire code set can be viewed at a glance without

scrolling. Wherever the same functionality can be defined with

reduced code, less is almost always more.

• Modular.
Functionality that requires higher complexity can and should be

broken down into smaller and easier to manage components. A

modular approach to creating functionality allows for easier to

understand code that can be fixed and adapted without breaking the

bigger picture.

• Literally defined.
Advanced code concepts such as object oriented programming are the

equivalent to advanced language vocabulary. While there are

advantages to using these concepts in your code, you should always

remember that they increase the skill requirement for other people to

make use of your code. Avoid using advanced concepts that don’t

provide enough strategic value to justify their use. While most

academics and “elite” programmers will balk at this suggestion, it’s

important to remember that people who need to adapt your code may

not have advanced programming skills. Like with language

8

Software Development Introduction

vocabulary, keeping your code concepts simple means that more

people will have the skills to work with it in the future.

• Easy to follow.
Code created with too many dependencies becomes difficult to

understand. Even where the code is written in an easy to understand

format, it becomes difficult to track components and their

requirements when they are unnecessarily spread across different

locations within the code’s architecture. Make code easy to follow by

keeping everything self contained wherever possible.

There is no set rule for creating low complexity code, meaning that some of

these features contradict each other. Good code is all about finding a balance

between the benefits offered by each feature and deciding which options are

best suited to the situation you are writing your code to address.

1.4 Keep It Real

Ambition can lead to positive outcomes for a software project, but is also a

factor that needs to be managed properly to avoid disappointment. Optimism is

the main culprit behind this risk, especially when expectations of other people

in the project need to be managed. Being too optimistic establishes a situation

where expectations exceed what’s achievable with the available skills, time,

budget and technology.

Let’s look at the main factors for keeping realistic expectations:

• Skills
Your ability to write and manage the software components is the first

hurdle that defines whether expectations can be met. Risk of failing

expectations increase whenever there are requirements you have no

prior experience of developing. While it’s often necessary to learn new

skills on the job, you need to consider the implication of “learning

time”, along with the possibility of overestimating your ability to

learn the new skills. Being too optimistic will result in failing to meet

deadlines or missing features from the project specification. Similarly,

being too conservative in your judgement to learn new skills will limit

your ability to deliver the project’s requirements.

• Time

9

Software Development Introduction

Available budget, your availability and business opportunity

incentives are the three factors that dictate the amount of time

available for the project. It’s easy to be too optimistic about what can

be achieved in the available time, so make sure to reserve a margin in

your estimations for unexpected difficulties.

• Budget
The majority of software development costs come from time

investment, so the total cost is mostly proportionate to the amount of

time required. While there may not be a specific time target for the

project’s delivery, the software must be completed within the amount

of time that the budget covers. Wherever the budget is funded on a

fixed price basis, being overly optimistic can lead to the software

developers losing money on the time the invest into the project.

Meanwhile, teams pitching for software development contracts will

find it difficult to win anything if they significantly overestimate

budget requirements.

• Technology
Aside from skills, technology is the only other factor dictating what is

technically possible. With enough time, budget and skills, anything

can be achieved if the required technology is available. Limitations of

this may come in the form of whether the project can access the

technology, such as having the required budget to cover its costs,

along with the necessary skills to make use of it. Optimism on the

ability to access required technology, whether through budget or its

existence, is a risk that could backfire. Similarly, a conservative

mindset that dismisses the possibility of accessing technology can lead

to wasted time “reinventing the wheel” or lost opportunities for the

project to deliver beneficial results.

Being realistic isn’t about eliminating optimism from requirements estimation;

it’s about defining realistic ambition with consideration to any scope for

negative consequences.

1.5 Don’t Repeat Yourself

New programmers and so called “cowboys” are often tempted to replicate

software features through copy and pasting from a previous version of the

functionality. Stop right there if you find yourself doing this!

10

Software Development Introduction

Unlike coursework and small personal projects, commercial projects are

typically subject to changing requirements. All code is a reflection of the

project’s requirements, so when these change, the project’s code also needs to

change. This introduces problems for managing and testing your code if it has

been copied and pasted “tens, hundreds or even thousands” of times throughout

your project.

Figure 1.4: Manually duplicated code requires intensive effort
to update and test.

The answer to duplication of software features without the duplication of code

is the use of elegant programming patterns and techniques. Examples of this

include object oriented programming and the use of n-tier software patterns.

These concepts are explained in more thorough detail in chapter 4, Processing.

qrin.uk/qrin.uk/cs/2cs/2

Interactive:

Discover the advantages of being able to duplicate

functionality without duplicating code.

• Problems of duplicated code.

• Concept of reusable code.

11

http://qrin.uk/cs/2
http://qrin.uk/cs/2

Software Development Introduction

1.6 Elegance Is Always Secondary to Functionality

While elegant code protects against maintainability nightmares emerging from

repeated code and the like, taking this to the extreme causes other problems

that are equally as damaging to the project. A software project’s primary focus

should always be to make use of the best approach to deliver the required

features.

While strategically useful, elegant code is often more costly to develop in the

short term due to the extra thinking and planning requirements. This approach

also requires people to have a higher level of skill and experience with the

applied elegant programming techniques; highly skilled people are also more

expensive than their beginner and junior level counterparts.

The aim of elegant code is to reduce long term production costs by allowing

future updates and testing to be performed with minimal effort. However, code

that is too elegant requires more effort and skill to work with. Problems that

emerge from this include:

• Difficulty in understanding how the code works leads to increased

scope for mistakes to be made.

• Elimination of task delegation to lower skilled (and hence lower paid)

programmers leads to increased maintenance costs by limiting

deployment options to more experienced senior level developers – who

are more expensive to hire.

• Increased learning and analysis requirements – executed at least once

for each new developer introduced to the project. This may also need to

be repeated if developers have taken a break, such as being deployed to

other projects.

Where code is too elegant, it can become as difficult, if not more, to maintain

the software than poorly written “spaghetti” code. The main difference with

overly elegant code is in how maintenance options are restricted to using higher

skilled senior level developers who are significantly more costly to hire.

1.7 Short Term Laziness Is Bad

Taking upfront shortcuts usually leads to more work requirements further into

the project. Despite these shortcuts initially allow for rapid progress, the

12

Software Development Introduction

problems they produce later in the project’s lifecycle lead to an eventual

decrease in productivity when:

• More time is spent on fixing broken code.

• Change requirements become problematic to implement.

The engagement of change requirement modifications leads to “blowback”,

where updates not only take extra time to implement, but are more likely to

produce new faults that require additional time to fix. Meanwhile, the longer

the project is extended by these problems, the more likely additional change

requests will emerge.

1.8 Strategic Laziness Is Good

While short term laziness produces long term problems, there are still ways to

use shortcuts to reduce your overall workload. Good programming is all about

being able to do more with less time, so it makes sense for strategies to have a

focus on reducing the need to write new code – i.e. efficiency.

Write less code to do more of the work...

The main difference with this principle is the focus on producing code and

development processes to be highly flexible, reusable and automatic wherever

possible. This is not about an ability to copy and paste code across the project,

but allowing an individual set of code to deliver multiple functionality and to be

easily adapted for future requirements without major updates. The time

benefits delivered by this principle can mean the difference between investing

several hours versus just a minute or two to implement and test each change

request.

Programming

The process of defining how software systems should work is called

programming; a skill requiring the ability to imagine, design and describe

processes in a logical order. In the same way that anyone can draw a picture,

anyone can program a software system, but only experts have the skill to design

with accurate detail and quality.

13

Software Development Introduction

Anyone can draw a picture, but only an expert

has the skill to design with accurate detail and

quality.

The way in which software is defined is always a secondary concern to what is

being programmed. No matter how good the quality of a program’s definition, it

will always be of little or no use if not defined to solve the right problem in the

correct way. Therefore, learning to define software correctly is the primary skill

that is transferrable to all forms of programming. Learning how to represent a

program’s design in a format such as code is always a secondary skill of a good

programmer.

1.9 Programming With Code

The most flexible approach to programming is to define the program design

though code created as a series of step by step instructions that tell a computer

exactly what to do. Although coding and programming are often used

interchangeably, they are two different concepts. Let’s take a look at their

differences:

• Programming.
The process of defining rules for a system to follow.

• Coding.
The act of creating written (or otherwise) notation representing the

descriptions of rules, information and concepts.

Equivalent concepts are found in story writing, poetry and other creative

literature. While coding is the equivalent of the written descriptions, the

programming is the structure of the story being described. In the same way that

computers can support programming languages, anyone who has the ability to

make sense of English will be able to understand and imagine the events of a

story written in this language.. For an author, the English language is merely a

format to express their ideas and imagination – in the same way that a

programmer uses code to express their thinking processes.

14

Software Development Introduction

Think About...

Writing a novel is similar to writing a program.

While JK Rowling may have had the creative skills to generate the idea

for the story behind Harry Potter, she also required the technical writing

skills to allow her ideas to be expressed in a way that her book’s readers

would understand. These writing skills include the ability to describe the

scenery, characters and events in a format that helps readers to use their

imagination to full effect. The literature’s writing is “programming” the

experience of its readers through the use of detailed descriptions and

grammatical “syntax” that helps people to avoid misunderstanding any of

the details being described.

Another factor that will have been considered in the “design” of Harry

Potter is how the stories can be evolved in future releases – i.e. books.

This design may be influenced by story strategy for entertaining fans, as

well as accommodating currently unknown influences such as embracing

future commercial money making opportunities and brand appeal. In this

sense, the story needs be designed with flexibility for current and future

plots to be defined in ways that meet whatever requirements may emerge.

Like with the written language used, this design of the story also has

parallels with programming. While stories are designed to have plots for

entertaining the reader, software systems are designed to have features

for solving problems. Both are required to be written in a way that is

clearly understood, and flexible to accommodate new requirements that

may emerge in the future.

1.10 Programming Languages

The only form of instruction that computers are able to follow is called machine

code; a language whose “alphabet” consists of just two characters – 0 and 1.

While this approach is easy for computers to understand, it is very difficult for

15

Software Development Introduction

us mere humans to make sense of. This causes problems wherever there is a

need to write software:

• Takes longer to learn.

• Fewer people able to learn.

• Longer to write software.

• Faulty code is more likely to be created.

• More difficulty in correcting the faults.

Language is all about defining a meaning that makes sense to the receiver. The

critical elements of language are vocabulary, followed by grammar. Let’s

compare what machine code vocabulary may look like compared to its English

counterpart:

Machine Code English Description

00000000 Stop Program.

00000001 Turn bulb fully on.

00000010 Turn bulb fully off.

00000100 Dim bulb by 10%.

00001000 Brighten bulb by 10%.

00010000 If bulb is fully on, skip over next instruction.

00100000 If bulb is fully off, skip over next instruction.

01000000 Go to start of program (address 0).

Instructing the computer to gradually increase the light until it reaches full

brightness would look like:

00001000

00010000

16

Software Development Introduction

01000000

00000000

While this makes perfect sense to a computer, it doesn’t make much sense to

humans. Let’s look at this code using the English equivalent descriptions:

Brighten bulb by 10%.

If bulb is fully on, skip the next instruction.

Go to start of program (first instruction).

Stop Program.

This version of the code is now easy for humans to make sense of, but is

unusable by computers. The complexity of modern computer systems means

that it’s unfeasible to expect programmers to learn and write advanced machine

code to meet the level of requirements and time constraints of typical software

projects. There is a need for people to have the ability to write code in ways that

are productive and maintainable, while at the same time allowing the code to be

understood by computer systems.

Fortunately, it’s possible to use “middle layer” software to translate human

written code into machine language. This type of software is not yet advanced

enough to accept plain English as the instruction language, but it does allow

instructions to be provided using a cut down version of everyday language. Let’s

look at how this could look:

English Notation Translation Machine Code

Brighten(bulb,10%)
If bulb.bright < 100%

Then Go start
End

00001000

00010000

01000000

00000000

Like English, this language has a “syntax”; a set format that words and grammar

must be used with in order for the instructions to be valid. Let’s look at the how

each part of the example code has been constructed:

Instruction Type Description

Brighten Function Will attempt to brighten the provided

17

Software Development Introduction

target by the specified amount. In this case,
the target is “bulb” and the amount is
“10%”.

If Keyword

Checks to see if a condition is true. In this
case, it is checking to see the bulb’s ‘bright”
property is “less than” (<) 100%. Any
bright value of bulb that is less than 100
will produce a result of “true”.

Then Keyword

Used in combination with the previous “If”
command, the “Then” command will
execute the following instruction whenever
a the previous condition returned true. In
this case, the “Go” command is executed.

Go Keyword

Sends the program’s execution to a specific
point in the code. In this case, start is the
beginning of the code – i.e. the first
instruction.

End Keyword
Instructs the computer to stop executing
any further code in the program.

The language has two types of command – functions and keywords. The

difference between these types of command is that keywords are instructions of

the language, while functions are instructions created by the programmer. In

short, a function acts as a container for executing several keywords in a specific

order defined by you; the application programmer.

Figure 1.5: A function executes a collection of instructions in
order to return a specified result.

18

Software Development Introduction

Functions are mainly useful for allowing functionality to be reused without the

need to repeat code. These functions are made more reusable by their ability to

accept parameters that allow for customised reactions to different information

provided. In this case, the “Brighten” function accepts parameters for target and

amount, with each separated by a comma.

Figure 1.6: A function using parameters to to affect the
returned result.

qrin.uk/qrin.uk/cs/3cs/3

Interactive:

Use animation concepts to understand the

relationship between keywords and functions.

• Select keyframes to use.

• Create individual animations from

keyframes.

1.11 Language Variations

While all programming languages beyond machine code are designed to make

programming easier to some degree, each language is designed with an

emphasis that makes them ideal for different purposes. Examples include:

• Easiness to write code.
For creating code quickly to put something together without needing

advanced programming skills. Useful for developing prototypes of an

idea, or for use by people who need to customise software

functionality for a more broader job role.

• Enforcing high quality code.

19

http://qrin.uk/cs/3
http://qrin.uk/cs/3
http://qrin.uk/cs/3

Software Development Introduction

Makes life easier in software maintenance for people with advanced

programming skills.

• Easiness to learn.
Allows people to learn foundation concepts of programming without

being confused or distracted by more advanced concepts.

• Execution speed.
For types of software that require fast processing in order to be usable

or useful – such as AAA computer games and scientific modelling

system.

• Domain specific purposes.
Artificial intelligence, data management, web page content and

multimedia content are examples where specialist software systems

are used.

All languages share support for foundation logic principles and grammar –

otherwise known as syntax. It’s not uncommon to see languages share the same

names for commands and grammatical syntax, hence making it significantly

easier to learn additional programming languages.

While all programming languages share foundation logic principles, some are

more focused on supporting advanced concepts such as object oriented

programming, while others keep their focus on providing a language that’s easy

to use. There are also languages that provide a mixture of easier programming

with features for advanced concepts.

1.12 Choosing the Right Language

In addition to some programming languages being designed for a specific

purpose, complexity is another factor of suitability. While advanced software

developers require advanced features to create advanced software systems, the

complexity of this technically “ideal” programming language is generally

overwhelming for people with a lower level of skill.

Advanced software systems require advanced

programming features to express advanced

concepts...

20

Software Development Introduction

For beginners, programming languages that focus on simplicity make it easier

to learn foundation principles without unnecessary distraction. This has a

significant advantage for building a solid understanding of programming

concepts that can be expanded upon, as well as an understanding of strategies

to navigate and read code. While keeping code concepts simple, learners are

able to develop awareness that leads to an ability to be self sufficient and

confident in their abilities to independently solve problems.

Beginners need a focus on simplicity to avoid

unnecessary distraction.

From a commercial perspective, many software projects don’t require the use of

advanced programming concepts. In these situations, advanced programming

increases the skills required for future maintenance updates, resulting in

unnecessary cost increases. This is because people with advanced programming

skills are harder to find, and hence more expensive to hire. It makes better

sense to develop simple software functionality using tools and code that regular

IT staff can learn quickly or already use.

However, not all software project requirements can be developed with

simplified code. The use of advanced programming concepts is a critical

element for retaining control of complicated software projects. While these

concepts are more difficult to learn, their payoff is delivered many times over

through saved time, ability to adapt the software and increased quality. For

these projects, it makes sense to use a programming language that offers

advanced features to allow programmers with advanced knowledge to produce

code that can fully benefit from the advantages of using advanced programming

concepts.

Language Purpose

SQL A low complexity and easy to understand query language created

specifically for interactions with database systems. Allows

analysts and software applications to easily request and manage

details about data in order to find answers to questions.

www.mysql.comwww.mysql.com

Visual Basic Easy to learn, allowing new programmers and non specialists to

21

https://www.mysql.com/

Software Development Introduction

create desktop software applications and extended functionality

for Microsoft Office.

Python English like language that allows functionality to be created for

desktop and server applications. It is also used by some software

applications to allow new functionality to be added.

www.python.orgwww.python.org

Monkey Created specifically for the development of multimedia

applications such as games. Allows for advanced programming

concepts to be expressed in a highly English like language.

www.monkeycoder.co.nzwww.monkeycoder.co.nz

Javascript Originally and primarily used for allowing interactivity in web

pages. As the web has evolved beyond merely providing online

“brochure” style content, Javascript has become the standard for

programming application functionality into web based content.

In more recent times, Javascript has been used outside of the

web browser, such as within sensor based devices and web

services. This language is the one to watch for future

programming standards.

PHP A scripted language primarily used for controlling the server side

operations of web applications. It is designed with intermediate

complexity that allows code to combine advanced and simplified

programming styles. Unlike many languages, PHP provides

programmers with choice on how to define code – for good or

bad.

www.php.netwww.php.net

Java A very strict language that enforces code to be written to high

standards. This is a significant advantage for commercial

applications where code quality has a direct impact on flexibility

for change control and other project issues. The same factors

become a significant disadvantage for beginner programmers

22

http://php.net/
http://monkeycoder.co.nz/
https://www.python.org/

Software Development Introduction

due to a steep learning curve being imposed; not only to learn

about programming, but also the need to learn how Java will

accept code.

www.java.comwww.java.com

Assembler Created as a direct comparison to machine code instructions.

Unlike all of the other languages mentioned, there is no focus on

making code related to everyday English beyond presenting

individual machine code commands as shortened words. For

example, using JMP as the command for “jump to memory

address”. This language requires high skill and knowledge of how

to use the specific hardware that’s being programmed – without

any support of higher level concepts provided by programming

languages that make code easier to develop.

While this language is no longer used for the majority of

commercial software projects, it is still useful for developing

custom code for low specification hardware. These are typically

miniature low cost computer components found inside electronic

devices such as toasters and DVD players. These systems provide

highly specific features such as timer and sensor input

functionality that are relatively simple to code and require

minimal memory and hardware resources to execute.

1.13 Future Programming

Programming technologies have consistently progressed in reducing the

difficulty of writing code. While programmers originally had to manually

program with machine code, the introduction of Assembler made expert

programmers more productive by allowing them to write human readable

instructions. Since then, new programming languages have emerged to

eliminate the expert knowledge required for directly programming hardware,

replacing the emphasis on using code to define logical rules with an increasingly

more “English” style format.

23

https://java.com/

Software Development Introduction

Machine Code
(1940s - 1970s)

Assembler
(1970s - 1990s)

Javascript
(1990s - present)

00001000

01010001

01000110

00000110

LD a,10

LD b,a

add a,b

sub 6

Var a = 10;

var b = a;

a = a + b

a = a – 6;

Figure 1.7: Comparison of how programming languages have
become easier to write and understand.

This pattern of increasingly easier options to create software points towards a

future where programming is defined through easier methods than is currently

the norm. While there will always be a need for people with skills to write code,

industry demand is and will continue to move away from the need to manually

write code and move towards more “natural” methods to design the logic

behind software systems. Technology advancements are likely to give rise to

new methods of defining code, such as through pictures and diagrams that don’t

rely so heavily on skills in maths and writing.

Figure 1.8: Future programming will likely take many more
forms than just written code.

Although it sounds like the technology for this is far away, the reality is that the

foundations are already in place. Let’s look at how modern approaches to

human computer interaction are likely to influence the evolution of

programming:

24

Software Development Introduction

User Interfaces

The use of visual interaction concepts as seen on typical computers including

Windows PC and Mac are now the most common method of defining

instructions for computers. These visual interfaces have meant that the average

non technical person can easily figure out how to use computer systems without

the need to learn any command line programming instructions that were

previously a mandatory requirement before the introduction of systems such as

Microsoft’s Windows and Apple’s Mac OS.

Similarly, the use of visual user interfaces have already allowed software

systems to be defined without the need to write any code. This visual approach

to creating software often isn’t perfect by any means, but still allows people who

have little or no code writing skills to create databases, web pages and simple

apps.

Automated Code

Through the use of tools based around visual and spoken interactions, the code

for software features can be defined without being directly written by a human.

Not only does this approach eliminate high skill requirements, but also opens

scope to increase efficiency for software development.

Natural Language

Advancements in natural language recognition has led to the emergence of

digital assistants such as Amazon’s Alexa and Siri from Apple, allowing people

to provide spoken instructions and requests to their smart devices such as

smartphones and computers using spoken language. Not only do these

technologies allow speech to be used as a form of human/computer

communication, but also using regular spoken language – meaning no prior

knowledge is required to learn specialised instructions or language syntax.

Written and visual communications are also forms of natural language that

technology has made advancements to make use of. The ability for computer

systems to recognise handwriting, pictures, video and photography already

exist, meaning that these are already candidates for future programming

methods.

25

Software Development Introduction

Artificial Intelligence

Combining the use of user interface interactions with natural language

recognition and the ability for software systems to write their own code can be

further supported with the use of artificial intelligence (AI) technologies. The

application of this allows computer systems to work with human programmers

to create better code, design more effective features and identify better ways to

solve problems.

An example of the application of artificial intelligence to software programming

is genetic algorithms. Based on evolutionary theory’s concept of natural

selection, these algorithms have the ability to monitor and rewrite their own

rules. Through a process of experimentation and performance analysis, genetic

algorithms deploy multiple versions of “experimental” revisions in order to

identify and choose the best performing updates. It is this process that allows

genetic algorithms to become become better at whatever they have been created

to do as they gain more exposure to new experiences.

1.14 Programming Today

While the foundations are already in place for a new revolution in the process of

defining software systems, coding skills are still going to be in demand for the

majority of software projects in the foreseeable future – at least the next decade

or two. Serious software development still requires functionality to be defined

efficiently through the use of code, which is currently the only option if you

want complete control of defining the software’s functionality.

Although the demand for coding skills isn’t going to disappear anytime soon,

requirements for coding is and will continue to evolve in response to industry

demands. The primary influence of businesses expenditure is the need to

control costs, and as the saying goes – time is money. Any type of programming

resource that reduces costs through faster production and lowering skill

requirements are good candidates to be adopted by commercial projects. A

resource becomes a “trend” when adopted by many industry projects. When this

happens, skills and knowledge of using these resources become sought after by

employers. Let’s look at some of the trends that are emerging in industry:

• The rise of Javascript everywhere.
From humble beginnings as a simple scripting language for basic web

page interactivity, Javascript has evolved for use in all types of

software application. The ability to use the language for extending

26

Software Development Introduction

functionality in a diverse range of applications from Adobe Photoshop

to Microsoft Office, as well as for creating standalone apps for mobile,

desktop, server and sensor devices means that Javascript code is

highly portable and reusable. As well as Javascript being a much

easier language to develop with compared to counterparts such as

Java and C++, this write once to use anywhere ability provides

industry organisations with an incentive to choose Javascript for

reducing/eliminating time and costs to rewrite software functionality

for different platforms.

• Frameworks.
Pre-made code created to extend the default ability of a programming

language. These frameworks are designed to allow projects to quickly

get started with the benefits of a robust foundation that can withstand

future change requirements. These frameworks reduce costs

associated with upfront startup time, documentation, ongoing

maintenance and skill requirements.

• Legacy languages.
Systems developed in the past still exist, so although new projects

don’t tend to use languages such as Perl, there is still a need to extend

and adapt software developed with these older technologies.

Eventually, these systems will be replaced when they are no longer

required or where their maintenance becomes unfeasible.

Through learning to code, you also learn transferrable knowledge required for

any type of software development.

1.15 Later this Week

The evolution of software development is gradually moving to embrace forms of

programming that aren’t so heavily dependent on manually writing code. One

of these emerging patterns is through the use of specialised software

development tools that allow instructions to be created through user interface

interactions. These tools also allow features to be supported by so called

“scripts”, which are manually written code to support the features created via

user interface interactions.

• Microsoft Office / Open Office

• Unity

27

Software Development Introduction

• Adobe Captivate

• Filemaker / Microsoft Access

Anyone who has knowledge and experience of writing code will always be in a

better position to embrace new programming technologies. People with coding

skills can quickly write scripts to extend functionality and define software more

efficiently without any reliance on user interface features – which can be slow

and confusing, if available at all. Knowledge and experience gained through

code based programming is also transferrable to other forms of programming,

hence allowing you to adapt more quickly to different development tools using

your knowledge of their underlying principles.

qrin.uk/cs/6qrin.uk/cs/6

Watch and Learn:

Identify how visual authoring tools are making it

easier to create interactive content.

• Visual programming.

• Minimal coding.

Types of Software

Code written using a programming language forms an end product known as a

program – or software. There are three primary categories that software

programs can be created under; hardware, operating systems and applications.

Let’s look at what these are.

28

http://qrin.uk/cs/6
http://qrin.uk/cs/6

Software Development Introduction

Figure 1.9: How software layers allow applications to run
across different types of hardware and operating systems.

1.16 Hardware

Hardware level software is primarily focused on the logistical operations

required to run the computer hardware. In short, hardware layer software is

developed to provide computer systems with the ability to quickly get started

and perform the task it was created to do.

Operations of hardware level software include managing input and output from

devices such as the keyboard, screen display and data storage resources.

Hardware level software is critical for allowing the computer system to access

other types of software that are not embedded directly within the hardware, as

well as allowing for the most basic of interactions to occur between the

computer and its user.

Microcontrollers

It’s uncommon for modern commercial projects to result in code written for the

hardware level; primarily because of the high skill and time requirements

increasing costs, as well as this type of code not being reusable for other types of

29

Software Development Introduction

hardware. Software projects written at this level tend to be very small, simple

and for a specific purpose.

A common motivation for writing software at this level is to reduce costs

incurred in hardware production. For example, a toaster requires a very simple

timer function to “pop the toast” according to the user’s preference. Using a

fully featured computer system to control this would be overkill, and increase

hardware costs to more than the value of the toaster. A more suitable option

would be to use a microcontroller; a minimalistic low specification computer

contained on a single chip.

Unlike more advanced computer systems, microcontrollers have just a few bytes

of memory and operate at a very low speed. Their low specification are just

enough to perform a highly specialised task, such as counting time to “pop the

toast”. This low specification is also reflected by their price; often at just a few

pence – making them ideal for controlling specific functionality within

appliances and sensors.

Desktop Smartphone Microcontroller

Figure 1.10: Comparison of microcontroller memory to
smartphone and desktop computers.

30

Software Development Introduction

1.17 Operating System

The next level up from hardware level software is the operating system. This

layer exists to allow applications software to be created without concern for

specific hardware. Several advantages exist for writing software applications for

an operating system instead of for specific hardware:

• Applications can run on any type of hardware supported by the

operating system.

• No need for applications to have code for managing the hardware –

these are available as services from the operating system.

• Applications automatically benefit from operating system upgrades –

such as gaining support for more hardware, security and efficiency.

• Services provided by the operating system significantly reduce

requirements for development and testing of applications software.

Responsibilities of this layer are focused around the management of hardware

resources. The operating system acts as a middleman, providing “services” to

allow hardware and software applications to interact. Examples of these

services include:

• Send/receive data via the Internet.

• Update/read data in memory.

• Store/read data in file storage.

• Update a screen display.

• Send a document to a printer.

• Automatic management of resources – such as:
◦ Garbage collection – the deletion of memory data that is no longer

in use.

◦ Multitasking – the management of resources provided to allow

multiple software programs to run simultaneously..

• Detect user interactions from input devices such as touchscreen,

keyboard, joypad or mouse.

31

Software Development Introduction

Just like programming languages allow more programmers to create advanced

functionality without requiring advanced skills, the operating system also

allows for this. By reducing the skills and time needed to directly manage

hardware, application programmers are able to be more productive by investing

their effort into creating “useful” features that define the purpose of their

application.

In short, while hardware level programming requires the ability to define “how”

to do an operation, operating system level programming reduces this to merely

defining “what” operation to do.

qrin.uk/cs/8qrin.uk/cs/8

Interactive:

An exercise to demonstrate the role of an operating

system.

• Play the role of the operating system.

• Translate instructions to match their target.

1.18 Applications

For general purpose computers, the applications layer is the area of software

most noticeable to end users. Where the previous layers are focused primarily

on the logistics of computing operations, this layer's primary focus is on

providing useful functionality. Computer systems are unable to serve a useful

purpose without applications.

Unlike software created at the hardware level, applications are designed to be

loaded into memory as and when required by the user. These applications

mostly, if not entirely, rely on controlling the computer’s hardware via services

provided by the operating system. The relationship is most easily described as

software applications being created to control the operating system, while the

operating system is designed to control the hardware.

32

http://qrin.uk/cs/8
http://qrin.uk/cs/8

Software Development Introduction

Figure 1.11: Applications control the operating system to
control the hardware.

Without a primary concern for computing logistics, the design and development

of this type of software is mostly focused around solving sociological issues –

i.e. people problems. From people’s need to be entertained and educated, to

becoming more productive and communicate, software applications make

general purpose computer systems such desktops and smartphones become

useful tools.

Applications have a prerequisite requirement for users to use the same

operating system that the application was coded for. As a result of operating

systems tending to be written for a limited range of hardware configurations, an

additional hardware requirement is also inherited in order to run the operating

system.

Middleware

The problem with applications written for a specific operating system is the

inheritance of hardware compatibility. This is problematic for software

applications that need to support users across different devices and markets.

Although writing software applications for a specific operating system may

provide instant compatibility with a range of hardware, there are still a couple

of concerning issues:

• Some forms of hardware may not be supported by the chosen operating

system.

• Not all users of the desired hardware will use the chosen operating

system.

One strategy for software developers is to choose an operating system used by

the largest number people/hardware. For desktop and laptop users, the obvious

choice would be Windows from Microsoft, while applications for use with ultra

portable device such as smartphones would target Google’s Android.

33

Software Development Introduction

While this strategy makes sense, there are a few flaws in this approach:

• The largest audience isn’t always the most suitable.
◦ Where the aim is to make a profit from sales of the app, it’s well

known that users of Apple’s iPhone and iPad devices are much

more likely to purchase apps than user’s of Google’s Android.

◦ Creative professionals generally have a preference to using Apple

Macs.

◦ Many technical types have a preference to using one of the

variants of Linux.

• There is often a need for the application to be used on different types of
device.
While Windows is popular on desktop and laptop devices, it’s very

uncommon on ultra portables such as smartphones.

• Situations often dictate the most suitable type of device.
While a desktop computer has a lot of processing power, it’s not

suitable for any situation involving remote locations away from a

power supply. It’s for this reason that smartphones and tablets have

become more popular than traditional home computers.

• There is always scope for the technology landscape to change.
Once upon a time, not so long ago, the desktop computer was the most

common form of home computer – with Microsoft’s Windows being

the operating system of choice. In an unexpected twist to the story,

ultraportable devices started to appear that gave an equivalent

experience for using the web and entertainment applications,

resulting in users switching their primary choice of computer from

desktop to smartphone. Today, as of 2018, Google’s Android is the

most popular operating system used on consumer devices.

While an option to solve this problem would be to write separate versions of the

software application for each operating system, this is time consuming and

costly. Many software projects have a limited time and budget, so spending

more on this to repeat work isn’t ideal. This option may not be possible where

there is a limitation on the available budget or time.

Enter middleware – a solution for allowing software applications to run on

operating systems they were not specifically written for. The use of middleware

means that software applications can be developed without concern for the

34

Software Development Introduction

hardware or operating system. Wherever the middleware is supported, the

software application is also supported; hence no need for duplicated software

development.

Software developers have several option categories to choose from when

making use of middleware to create applications:

• Virtual machines
A simulation of a computer that doesn’t exist. The idea here is that

software applications are written and compiled to the virtual

machine’s specification as though it were a real computer system; the

virtual machine manages any translation required to make code work

on the real computer’s operating system.

Examples:

▪ Java – a platform created to allow software applications to

run on top of any operating system and over the web.

▪ Web – an open standard that has emerged, allowing software

applications to run on any computer system that has a web

browser with support for web standards.

• Emulation
A type of virtual machine designed to simulate a type of computer

system that exists in the real world. Emulation differs in its focus from

virtual machines by allowing a computer to become compatible with

existing software of another. This is mostly used for allowing modern

computers to run software designed for older systems – whether it be

old business applications or games created for retro game consoles.

To a lesser extent, emulation is also used to allow modern computers

to run the software of other modern computers.

Examples:

▪ Wine – used to allow computers running versions of the Linux

operating system to run software applications created for

Microsoft Windows.

▪ DOSBox – allows modern Windows based computers to run

software applications created for Microsoft’s old operating

system, Microsoft DOS.

35

Software Development Introduction

▪ SNES9x – created to allow games created for the Super

Nintendo games console to run on computers using Windows,

Linux, Mac or Android operating system.

• Libraries
While most approaches to middleware focus on managing the

entire functionality of the software application, libraries focus on

just part of the functionality. Options are available for these

resources to be installed as an extension of the user’s operating

system or to be packaged as part of the software application.

Example:

▪ OpenGL – a graphics library that allows the same code for

visual software applications to run without modification on

different computer platforms.

• Scripting
While the previous examples rely on using some form of compiled

machine code to deliver application functionality, scripting has a

big focus on storing instructions in human readable form. There

are options for scripts to be embedded within a parent software

application, as well as the script being the software application.

Scripts are translated into machine code as they are executed –

meaning they are technically slower for the computer to run, but

are much easier to change.

While technically being slower for the computer to execute, many

scripting languages make use of techniques such as “just in time”

(JIT) compilation. This allows for scripts to be efficiently compiled

before they are needed, avoiding the need to compile during the

program’s execution.

Examples:

▪ Javascript – the language most popular for its use by web

browsers to define web page interactivity.

▪ PHP – mostly used on servers to manage “behind the scenes”

work required for web systems such as Facebook.

36

Software Development Introduction

▪ Python – Another scripting language that can be used to

create server functionality, but is also used for desktop and

sensor device based applications.

▪ Microsoft Office - has support for macros, which are code

written in Javascript or VBA (Visual Basic for Applications) to

allow new features to be added to the Office applications.

The use of middleware changes the approach for software development

strategy. Application development is no longer restricted to focusing on fixed

hardware or operating system platforms. Where software has been developed

for a fixed platform, middleware opens opportunities for these applications to

be used elsewhere.

Formatting vs Programming

Programming and formatting are two methods of defining instructions that are

often confused to be the same. While they share many similarities, both have a

significantly different focus and purpose. Their most notable differences can be

identified as:

• Formatting is for presentation.

• Programming is for functionality.

Understanding these differences allows software to be constructed in ways that

formatting and programming code can compliment each other without

compromise. The ability to define content presentation rules separately to the

main functionality code is a useful ability for projects where designers and

programmers need to collaborate.

While programmers may have skills to define both programming and

formatting code, a designer's skillset is likely to be limited to content

formatting; and not necessarily to an advanced standard. A good programming

strategy would use code as a resource to provide more control to designers by

responding to information contained within any formatting provided. Not only

does this allow designers to take more responsibility for their work, it also helps

to avoid the project becoming overly dependent on the programmer(s). More

details about these issues are covered in chapter 6, Being Agile.

37

Software Development Introduction

Think About...

Software projects – more than just code.

Many software projects require at least a small element of input from

designers, content writers, musicians and other creatives. While still a

software project, the resulting software is no longer the creation of

programmers. All creatives seek to control the presentation of their

content, whether it’s for visual presentation, readability or audio.

Formatting becomes a useful tool in software development for providing

creatives with the ability to control how their content is presented

without the need to understand the underlying code behind the software.

This provision of control also relieves programmers from being directly

responsible for implementing creative changes – resulting in reduced

workload and more time to focus on functionality. Even better, software

developers can progress to develop functionality before the creative

presentation requirements have been finalised.

Let’s look at some specific examples of how this approach to software

development works:

Graphic Design

People involved in creating visual content for use in software applications

will be highly focused appearances; whether it be based on their vision or

to match a design specification they’ve been provided to work from. Like

with software development, visual design is a concern affected by ongoing

change requests. Scope for workflow bottlenecks and ongoing technical

problems emerge wherever there is a reliance on programmers to convert

and integrate design content into the software system.

The use of formatting within the software system solves these issues by

providing designers with the ability to control their design content.

Where possible, embracing a suitable formatting standard would benefit

the project by allowing designers to create visual content using graphics

software they are already familiar with. Not only does this avoid the need

38

Software Development Introduction

for designers to learn how to manually create formatting, it will also allow

them to maximise their productivity and output quality.

Vector formats such as SVG (Scalable Vector Graphic) are ideal for this

type of graphic integration into software projects. Unlike regular images,

these formatting standards allow graphics to be defined in ways that

software code can interact with. For example, the graphics designer can

create an image of a car in which the code can apply reactions to

components such as when the wheels are clicked on. In this case, the

designer can make as many changes as they want to their visuals without

needing the programmer to adapt any code.

Content Writing

Projects with a heavy element of written content require the services of a

content writer. It could be a journalist for a news website, an education

professional for e-learning content, or a story writer for an interactive

game. Formatting can be used to describe the context of the written

content in a way that code created by a programmer can decide how to

make use of.

Like with graphic design content, the use of a standardised format would

allow authors to use their preferred text authoring tools to write content

without any need to invest effort into learning new skills. The project

would also benefit from any authoring features available from these tools

that make writers more productive and produce higher quality writing.

Popular formatting standards supported by writing tools include XML,

ePub and HTML. All of these formats are easy for programmers to write

code that can read and respond to this type of content. In many cases

such as with the use of HTML, content can be styled directly by the

graphic designers – further helping to avoid the programmer being the

cause of workflow bottlenecks.

Language Translation

An extension of content writing that’s specific to project requirements

needing to support more than one language. Many strategies are

available to allow content to be formatted in ways that allow code to

detect the most suitable content to display. In some cases, it is possible to

control the presentation of multiple languages from presentation formats

39

Software Development Introduction

such as CSS.

Event Interactions

Useful for software applications that depend on intensive user

interaction, formatting can be used to structure data descriptions that

influence how code responds to user input. A typical strategy used for

developing multimedia applications such as games and simulations, this

approach provides content authors with the control they need to define

how their content is presented in response to user interactions without

being too dependent on support from programmers.

Like with graphic design and content writing, event descriptions can be

created with the help of software applications. Although these formatted

descriptions can be manually created, the use of a software application

helps to:

• Guarantee consistency.

• Improve productivity.

The type of formatting required to describe event interactions is often

outside the skillset of content authors, hence the use of software tools

allowing them to take on responsibilities that would otherwise be left to

the programmer. These software tools are often custom made

applications created by the programmers for the project – although

options are often available to use off the shelf tools.

The main motivation for using formatted data to define and control

responses to user interactions is the need keep change requests

manageable. Elements related to content presentation are most at risk of

being affected by change requirements. Like with imagery and writing

used for visual brochure style content, the design and delivery of event

interactions has a significant influence on the perception of interactive

content, so it’s important for creatives to have the freedom they need to

design scope for interactions to a high standard.

Let’s take a look at the interactive story game Monkey Island. Described

in its simplest form as a series of responses to the player’s mouse

controlled point and click interactions, it is the design of responses to

these interactions that defines the quality of entertainment experience

delivered. From a technical perspective, the game will use the same

40

Software Development Introduction

functionality regardless of its story and interaction design. This

foundation functionality consists of the ability to:

• Click on items.

◦ Interactive items within the game’s story trigger specific

responses according to “circumstances” within the game’s

state when being clicked on by the user’s mouse.

• Speak to game characters.

◦ Game players are able to interact with non playable game

characters within the game through the use of scripted

speech interactions. Like with clickable items, game players

are given options to select via point and click interactions for

speaking with game characters, which may change according

to the current circumstances of the game’s state.

Communication options chosen by game players may also

affect the game status, which in turn could trigger changes to

clickable items and locations.

• Change state of locations.

◦ Locations in the game may display with different imagery or

allow for different types of interaction based on specific

states of the game. Examples of this include weather and

time of day.

This functionality, especially when developed to a high standard, creates

potential to deliver an exceptional entertainment experience. However,

its potential can only be achieved when the creative design process has

flexibility to refine the story through continuous iteration and testing;

like the typical software development lifecycle.. It is this creative design

process that becomes problematic for programmers – i.e. the story and

game design’s continuous changes until the formula has been perfected.

It is through this iteration that many changes will be required based on

received feedback that only occurs after the development of the design

requirements. This becomes a major problem if interactions have been

“hard coded” into the software programming, leading to the project

becoming too dependent on its programmers to implement every change

requirement that will inevitably create an unmanageable bottleneck.

41

Software Development Introduction

This problem can be avoided with the use of data formatting that allows

creatives to make as many changes as they need to without involving

programmers – providing freedom to produce better output without

increasing software development requirements.

qrin.uk/qrin.uk/cs/1cs/1

Watch and Observe:

Identify how the Monkey Island game is defined

through formatted data with consideration to:

• Visual content.

• User interactions.

• Story content.

How would the game code allow each of these to

be presented and influence each other?

On a technical level, there are a few differences between features of

programming and formatting languages:

• Logic

• Number operations

The logic and number operation abilities of a programming language allow for

less literal approaches to creating functionality and content descriptions. While

formatting is mostly limited to defining outcomes to match specific conditions,

code allows for advanced logic, algebra and other maths concepts to interrogate

and manipulate data in ways that produce a wider range of outcomes from

minimal definitions. These advanced features allow code to produce results

with higher efficiency and flexibility than is possible with manual definitions of

formatting.

42

http://qrin.uk/cs/1
http://qrin.uk/cs/1
http://qrin.uk/cs/1

Software Development Introduction

Figure 1.12: Ability of code to efficiently replicate content and
data.

It's important to recognise that these differences are not an issue of deciding

whether to use code "or" formatting, but more about how to use code "and"

formatting to complement each other.

qrin.uk/qrin.uk/cs/7cs/7

Interactive:

Define settings for presentation and functionality using

formatting and programming rules.

• Set presentation with formatting controls.

• Define functionality rules to affect output.

Conclusion

Creating software systems is a challenging task, so learn to avoid making the job

harder than it needs to be. You can do this by following the no nonsense

principles – keep it simple, keep it real, don’t repeat yourself, and realise that

elegance of code is always secondary to its functionality. The aim of these

principles is to focus effort to be invested on achievable objectives, using the

minimum amount of work required for current development and future

maintenance – it’s good to be strategically lazy!

Technologies available to help with the production of code have been improving

ever since the early days of computing technology. From programming

43

http://qrin.uk/cs/7
http://qrin.uk/cs/7
http://qrin.uk/cs/7

Software Development Introduction

languages that are easier to learn and understand, to the rise of frameworks,

code editors and visual design tools, the available options for defining software

systems is continuously evolving. Learn to identify which technologies are

suited to specific project requirements, while also keeping your skills up to date.

Programming technologies may change, but skills for analytical thinking and

understanding of software architecture design are transferrable to all software

development technologies.

Finally, it’s important to be aware of the changing nature of commercial

software projects. This type of work is very different to personal or academic

coursework projects due to exposure to changing requirements and influences

from different disciplines such as creative design, marketing and business

management. Learn to write code that has flexibility to be easily changed, along

with external controls that allow you to delegate responsibility for defining

anything other than the core software functionality. The use of data formats and

their associated authoring tools allow content creators to take responsibility for

integrating their creations into the software system. By developing your code to

provide creators with control of their work, you release yourself from being

drawn into project politics and extensive involvement in supporting change

requirements that become problematic.

Exercise

Identify a useful software application that you would like to create.

• Why is it useful? What problems does it solve?

What layer would the application be placed within? Why would it be created for

this layer?

What data is required for the application?

What functionality would be required for the application?

How would the data interact with the functionality?

How would you use formatting to benefit your application?

What situations would you want to use code to replicate data and content?

44

Did you like this?

Register for the free No Nonsense
newsletter:

Tutorials

Tips

Challenges

Click Here

www.nextpoint.co.uk/register/programming-newsletter/

http://www.nextpoint.co.uk/register/programming-newsletter/

	Software Development Introduction
	1 Overview
	
	1.1 No Nonsense Principles
	1.2 Focus on Immediate Requirements
	1.3 Keep It Simple
	1.4 Keep It Real
	1.5 Don’t Repeat Yourself
	1.6 Elegance Is Always Secondary to Functionality
	1.7 Short Term Laziness Is Bad
	1.8 Strategic Laziness Is Good

	Programming
	1.9 Programming With Code
	1.10 Programming Languages
	1.11 Language Variations
	1.12 Choosing the Right Language
	1.13 Future Programming
	1.14 Programming Today
	1.15 Later this Week

	Types of Software
	1.16 Hardware
	1.17 Operating System
	1.18 Applications

	Formatting vs Programming
	Conclusion
	Exercise

